

Proceeding of the Perbanas International Seminar on Economics, Business, Management, Accounting and IT (PROFICIENT) 2023

"Enhancing The Role of Banking Industry on Supporting Sustainable & Inclusive Economic Transformation"

SENTIMENT ANALYSIS FOR USER REVIEW POLRI HOSPITAL **REGISTRATION APP**

Moch Fajar Purnomo Alam*

Universitas Kristen Satya Wacana *Corresponding Author: 982022024@student.uksw.edu

Danny Manongga

Universitas Kristen Satya Wacana danny.manongga@uksw.edu

Irwan Sembiring

Universitas Kristen Satya Wacana irwan@uksw.edu

Wiwin Sulistyo

Universitas Kristen Satya Wacana wiwinsulistyo@uksw.edu

Abstract - The POLRI Hospital registration application is an application used to register and get health services at the POLRI Hospital. Sentiment analysis research can identify the most common complaints about the app. Additionally, it helps app developers improve user experience and fix issues. as part of the application assessment that has been used. This study uses the Naive Bayes method to collect complaint data from users of the POLRI Hospital registration application. This is done using the Google Play store platform. The results of using a model with 100 test data show that the model can categorize all evaluation data for POLRI Hospital registration applications into classes 29, 68 negative, and 3 neutral. The comparison value between positive, negative and neutral evaluations is 3:6:1. In conclusion, 68% of registration application users feel that the application does not make it easy for them to register patients.

Keywords: Sentiment Analysis, Naïve bayes, Opinion mining, NLP, Text Mining

I. INTRODUCTION

Technological developments and application adoption make it possible to use data analytics to collect unstructured data. In the era of big data, opinion mining and sentiment analysis (OMSA) has been used to assess public mood and divide opinion into different types of sentiment. (Apriani et al., 2019)(Zhang et al., 2016) One of the studies conducted on the My Pertamina Application used sentiment analysis to find out the tendency of users' Twitter comments about Pertalite's purchasing policy. The results of the study using the Naive Bayes Classifier Method showed that the value of complaint comments increased on the MypertaminaID Twitter account. The Naive Bayes method is a fairly good text mining classification method. This is due to the fact that this technique can achieve a very high degree of accuracy.(Arsi et al., 2021) The POLRI Hospital Registration Application allows members and the general public to register and obtain health services at POLRI hospitals. Polri hospitals (Polri Health) are a network of hospitals managed by the Indonesian National Police (POLRI) and located in various regions in Indonesia. Thus,

the National Police Hospital is included in the category of health services owned by the In the context of network government. strategy, sentiment analysis can help social management practices. It is used to express citizen opinion, which is expressed on Twitter and relates to important social programs during the Brazilian government of Rousseff.(Daffa Rhajendra¹ & Trianasari, 2021). It is difficult to track all activity in sentiment analysis, as it is one of the fastest growing areas of computer science researcht.(Diekson et al., 2023) Several researchers have used the Naive Bayes Algorithm to perform sentiment analysis. (Filemon et al., 2021), (Hirata & Matsuda, 2023), (J & U, 2023), (Maria et al., 2023), (Nugraha et al., 2020), (Ratnawati, 2018), (Tinaliah & Elizabeth, 2022) . The results show that the naive Bayes algorithm has a fairly high level of accuracy.

Table 1. Sentiment Analysis Research

Source	Result	Method	Data Set
(Maria et	Evaluation of	Naïve	Twitter
al., 2023)	public	Bayes	
	perceptions	Classifier	
	about using		
	the My		
	PERTAMIN		
	A App. This		
	study found		
	an accuracy		
	of 82.96%, an		
	accuracy of		
	81.17%, a		
	recall of		
	86.07%, and an AUC of		
	0.906.		
(Apriani	Evaluation of	Naïve	Google Play
et al.,	Tokopedia	Bayes	store
2019)	Application	Buyes	store
/	Comments.		
	good		
	C		
	accuracy		
	performance		
	of 97.13%		
	with a		
	precision		
	value of 1,		
	while Class		
	Recall		
	produces a		
	value of		
	95.49%		
	(positive		
	class,		

Source	Result	Method	Data Set
	negative		
	value). In		
	addition, the		
	AUC value is		
	0.980		
	0.760		
(Tinaliah	According to	Support	Google Play
&	sentiment	Vector	store
Elizabeth,	analysis	Machine	5,0,0
2022)	reviews on		
,	the Jamsostek		
	Mobile		
	Application,		
	it has an		
	accuracy of		
	96 percent,		
	accuracy of		
	92 percent,		
	recall of 96		
	percent, and		
	an f1 score of		
	94 percent.		
(Ratnawat	Algorithm	Naive	Twitter
i, 2018)	Implementati	Bayes	
,,	on for Film		
	Opinion		
	Sentiment		
	Analysis: The		
	system can		
	perform		
	sentiment		
	analysis with		
	90% accuracy		
	with details		
	of 92%		
	accuracy,		
	90% recall,		
	and 90% f-		
	measure.		
(Daffa	Evaluate	Naive	Twitter
Rhajendra	customer	Bayes	
1 &	reviews to	-	
Trianasari	improve		
, 2021)	Bukalapak is		
•	services. The		
	results of		
	sentiment		
	analysis using		
	the Naïve		
	Bayes		
	Classifier		
	(NBC) show		
	an accuracy		
	value of 83%,		
	a precision		
	value of 82%,		
	a recall value		
	of 80.33%,		
	and an f1-		
	score value of		
	80.66%.		
(Arsi et	Results of	Naive	Twitter
al., 2021)	Sentiment	Bayes	
		<i>y</i>	

Source	Result	Method	Data Set	Source	Result	Method	Data Set
	Analysis for	Classifier			89%, a		
	Moving the				precision of		
	Capital: The results of this				83%, and a		
	study indicate			(Diekson	recall of 87%. Analysis of	Cunnout	Twitter
	that this			et al.,	•	Support Vector	Twitter
	sentiment			2023)	customer perception of	Machine	
	analysis has			2023)	reviews:	Naïve	
	an accuracy				Traveloka	Bayes	
	value of				case study	Logistic	
	94.33%. By				Our	Regression	
	conducting				classification	regression	
	this analysis,				method		
	it is expected				found, based		
	to identify				on 1,200		
	issues related				collected		
	to the debate				tweets, 610		
	on moving				positive		
	the capital				tweets and		
	city.				590 negative		
	Therefore,				tweets each		
	this analysis				had a		
	can be used				relatively		
	as a reference				high score;		
	for further				however,		
AT 1	evaluation.	37.1	<i>m</i> .		positive		
(Nugraha	Method (Case	Naive	Twitter		tweets have a		
et al.,	Study: Public	Bayes with			higher score		
2020)	Opinion on	Relevance			than negative		
	New Normal	Frequency			tweets.	D . M 1.1	T :
	Policy) for Twitter	Feature Selection		(Hirata &	The results of Twitter's data	Bert Model	Twitter
	Sentiment	Selection		Matsuda, 2023)	sentiment		
	Analysis The			2023)	analysis were		
	results of five				used to		
	classification				investigate		
	accuracy tests				logistics		
	using the				developments		
	Naive Bayes				in Japan after		
	classification				the pandemic.		
	averaged				The results		
	62.6%, while				show that		
	the				sentiment		
	classification				towards the		
	accuracy test				word		
	with the				"logistics" is		
	addition of				usually		
	RFFS				positive. The		
	averaged				main positive		
	65.3%.				sentiment is		
(Filemon	E-	Algorithm	Google Play		caused by the		
et al.,	Government	Naïve			efforts made		
2021)	Application	Bayes			by relevant		
	Sentiment				government		
	Analysis: The				agencies to		
	test results				support and		
	using the				encourage		
	Naive Bayes				white		
	algorithm				logistics		4
	with TF-IDF			(J & U,	A hybrid	Pearson	Amazon
	weighting			2023)	method is	correlation	User
	show an				used to	coefficient-	Reviews
	accuracy of				analyse	based	

Source	Result	Method	Data Set	Source	Result	Method	Data Set
	Amazon user	Harris			influence of	(neural	platform for
	reviews.	Hawks			three	net), and	health-
	Experimental	Optimizati			variables on	PV (neural	related
	results show	on – based			sentiment	net).	forums.
	that the	Recurrent			analysis,		Typically,
	proposed	Neural			including the		each forums
	РССНН-	Network-			distribution		exhibit a
	RNNLSTM	Long			of sentiment		distinct
	shows	Short-Term			polarity, the		thematic
	significant	Memory			language		concentratio
	improvement	(РССННО			model		n, such as
	with 95.2%	-RNN-			employed,		diabetes,
	F-	LSTM)			and the		heart
	measurement, 95.8%	algorithm			model setting utilized.		disease, and arthritis
	accuracy,			(Yang et	The	Latent	health forum
	95.4%			al., 2016)	performance	Dirichlet	
	precision and				of conLDA	Allocation	
	95.6% recall.				surpasses that	(LDA),	
Windarto	Implementati	K-Means	Directorate		of the classic	conLDA,	
2017)	on of Rice	Clustering	General of		LDA, since it	(C-topic).	
	Import Data	Method	Customs		effectively		
	Mining by		and Excise		clusters		
	the majority				pertinent		
	Country of				medical		
	origin. The				phrases and		
	experimental				related		
	results show				queries		
	that Centroid			·	together.		
	data for high			(Dales et	This study	the vader	Social
	import level			al., 2021)	aims to	model	media tools
	clusters are				conduct an		- Twitter
	7429179.9				analysis of		
	and				the observed		
	2735452.25,				changes,		
	medium				discern		
	import level				patterns, and		
	clusters are				ascertain the		
	1046359.5				causal factors		
	and				behind these		
	337703.05,				trends,		
	and low				specifically		
	import level				examining if		
	clusters are				they can be		
	185559.425				attributed to		
	and				the COVID-		
	53089.225				19 pandemic		
Zheng et	This study	SVM,	Facebook		or external		
1., 2018)	aims to	logistic			influences.		
	employ	regression,		(Shi et al.,	This study	Linguistic	Twitter
	sentiment	AdaBoost		2020)	used	Inquiry and	platform
	analysis as a	and Neural		/	sentiment	Word	r J
	method to	Networks			analysis and	Count (or	
	investigate				topic	LIWC)	
	the dynamics				modelling to		
	and assess the				capture social		
	influence of				bots'		
	online health				sentiment		
	support				engagement		
	groups.				in distinct		
7hang et		NBSVM	A web				
Zhang et al., 2016)	The present study aims to	(n-gram),	A web crawler-		topics in online		
u., 2010)					discussions		
	examine the	RNNLM	based				

Source	Result	Method	Data Set
	of COVID-		
	19.		
(Gohil et	Moreover, 4	Multiple	Twitter
al., 2018)	out of the 12	methods	health care
	tools were	are used	research
	trained using	for	
	a smaller	sentiment	
	sample of the	analysis of	
	study's final	tweets in	
	data. The	the health	
	sentiment	care setting	
	method was		
	trained		
	against, on an		
	average,		
	0.45%		
	(2816/627,02		
	4) of the total		
	sample data.		
	One of the 12		
	papers		
	commented		
	on the		
	analysis of		
	accuracy of		
	the tool used		

Sentiment analysis is the government's way of knowing what people think. Public opinion can be positive, negative, or neutral.(Maria et al., 2023) In addition, research shows that the use of social media can increase the engagement index of local governments in Indonesia. (Kusumawati et al., 2022) Companies, governments and other groups benefit from sentiment analysis. (Apriani et al., 2019)

This study aims to identify patient complaints regarding upcoming medical examinations at the National Police Hospital through the application of the Naive Bayes Algorithm. This study will additionally aid application developers in assessing the level of acceptance of patient registration applications at the National Police Hospital.

II. METHODS

This research must complete six steps. This includes collection, manual labeling, preprocessing, TF-IDF weighting, data separation for training and test classification using the Naive Bayes algorithm, and data evaluation. System output can be classified into one of three emotional categories: Positive, Neutral, or Negative.

Figure 1. Research Methodology

Data Collection Preparation

The process of collecting and inputting data in this system begins with scraping web data. This data comes from the Google Play Store and consists of 100 comments. For this study, 20 percent of the exercise data was derived from the 20 prior datasets, and 100 percent of the test data were derived from the 100 prior datasets. Once collected, data is manually labelled as positive, neutral, or negative.

Preprocessing

One of the preprocessing stages, which consists of several stages, is eliminating problems that can interfere with the results of data processing, namely:

- a. Case Folding: Change text to lowercase, remove extra characters, username or mention of user (@), hashtag (#), and comment URL or link.
- b. Filtering: There's no point wasting words from the token results. Punctuation marks and stop words are also removed. Stop words are also omitted if there are words that often come out and are considered unimportant in a sentence, such as time, connectors, etc
- c. Stemming: At this point, the affixes are replaced with root words.
- d. Tokenizing: At this point, each word is separated according to the spaces found.

Transformation

In the word extraction process, TF-IDF (Term Frequency-Inverse Document Frequency) uses common word calculations on data retrieval to produce word weights. This weighting method combines the frequency term and the inverse frequency document. Terms that frequently appear in documents are called frequency.

$$Wtf_{t,d} = \begin{cases} 1 + log10 \ tf \ t, d, if \ tf \ t, d > 0 \\ 0, \ if \ tf \ t, d = 0 \end{cases}$$
(1)

$$idf_{t} = \log 10 \frac{n}{Df1} \tag{2}$$

$$W_{t,c} = Wtft.d. idf_t$$
 (3)

Information:

 $Wtf_{t,d}$ = Word weight in each document

 $tf_{t,d}$ = The number of occurrences of the term in the document

N = The total number of documents

Df = The number of documents containing

the term

= Inverse weights in df values idf

Wt,d = TF-IDF weighting

Data Sparation

The labeled data is divided into two: training data and test data. The author divides the training and test data into two for two reasons: the first is that the amount of training data is smaller than the amount of test data; the second is that the amount of training data is greater than the amount of test data.

Analisa dan Evaluasi

At this evaluation stage, we will use the confusion matrix to find out the results of the Naive Bayes algorithm accuracy performance, which includes accuracy, precision, and recall. Confusion Matrix is a method for measuring the performance of a classification model. The formulas used are accuracy (1), precision (2), recall (3) and F-measure (4) as follows:

Accuracy =
$$\frac{TP + TN}{(TP + FP + FN + TN)}$$
 (1)
Precision = $\frac{TP}{TP + FP}$ (2)

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN}$$
 (3)

F-measure =
$$\frac{2x \ precision \ x \ recall}{Precision + recall}$$
 (4)

Information:

True Positive (TP) is the amount of data with a positive value that is correctly predicted as positive,

True Negative (TN) is the amount of data that has a negative value and is correctly predicted to be negative, False Positive (FP) is the amount of negative data but is predicted to be positive,

False Negative (FN) is a data set that has a positive value but is predicted to be negative

The Naive Bayes algorithm is used to classify this research. This algorithm is based on Bayes' Theorem, which is derived from Bayesian statistics with strong independent assumptions.

Visualisasi

We use a word cloud to visually display the most common words.

III. RESULTS AND DISCUSSION

This section describes the results and discussion of sentiment analysis using the Naive Bayes Classifier algorithm. In this study the data used was obtained directly from the Police Hospital Registration Application on Google Play. After the data collection process, 100 reviews were obtained and the labeling process was carried out manually using positive, neutral and negative labels. As shown in table.2. The Police Hospital Registration Application gets negative reviews from users, shown in Fig. 2

Tabel 2. Dataset

Sentimen	Amount	
Positif	27	
Netral	8	
Negatif	65	

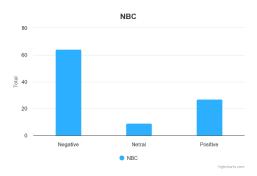


Fig. 2. Results of User Reviews with the Naive Bayes Classifier Method

Data collection

This study uses 100 data, some as training data and some as test data. For the data collection stage for user reviews of the Polri Hospital registration application, the web scraping technique is used. To retrieve the data using Google Collab with the program code as below:

```
!pip install google-play-scraper
from google_play_scraper import app
import pandas as pd
import numpy as np
from google_play scraper import Sort,
reviews
result, continuation_token = reviews(
'etransmedic.reservasi.polri.kramatjat
i',
    lang='id', # defaults to 'en'
    country='id', # defaults to 'us'
    sort=Sort.NEWEST, # defaults to
Sort.MOST RELEVANT you can use
Sort.NEWEST to get newst reviews
    count=100, # defaults to 100
    filter score with=None # defaults
to None (means all score) Use 1 or 2 or
3 or 4 or 5 to select certain score
```

Fig. 3. Program Code for Scraping Data

Furthermore, data labelling is made positive, neutral, and negative, and the process is done manually. This labelling is called data training and is tested by data assessment.

Tabel 3. Review Data Labeling

Label	Teks
Positif	Bagus
Netral	Kok bukan erikke SIM ya
Negatif	Sangat lambat loading terus. Tolong perbaiki sistemnya ya!!!

Preprocessing

The initial stage of text processing is preprocessing, which is carried out to extract interesting information from unstructured data and remove useless words from documents. There are four stages in the data preprocessing process: case folding, filtering, tokenizing, and stemming.

a. Case folding is the data processing stage to make all letters lowercase. Table 4 shows the results of the case folding stage.

Tabel 4. Case Folding

Teks	Teks
Minta tolong dong di perbaikistiap kali mau daftar kok di bilang koneksi buruk padahl signyal lancarbutuh banget daftar online kek gini apalagi saya punya baby,butuh banget nomor antrian yg cepat,harus ningalin baby jam 6 pagi di rmh hanya ambil nomor antrian	minta tolong dong di perbaikistiap kali mau daftar kok di bilang koneksi buruk padahl signyal lancarbutuh banget daftar online kek gini apalagi saya punya babybutuh banget nomor antrian yg cepatharus ningalin baby jam pagi di rmh hanya ambil nomor antrian
апитан	nomor antrian

b. Filtering: get the word out of the insignificant token yield. Punctuation and stop words are removed as well. If a sentence contains words that often come out and are considered unimportant, such as time, liaisons, etc., stop words are also omitted.

Tabel 5. Filtering

Teks	Teks
0 0	minta tolong dong
perbaikistiap kali mau	perbaikistiap kali mau
daftar kok di bilang	daftar kok bilang koneksi
koneksi buruk padahl	buruk padahl signyal

signyal lancar..butuh banget daftar online kek gini apalagi saya punya baby,butuh banget nomor antrian yg cepat,harus ningalin baby jam 6 pagi di rmh hanya ambil nomor antrian..

lancarbutuh banget daftar online kek gini apalagi punya babybutuh banget nomor antrian cepatharus ningalin baby jam pagi rmh hanya ambil nomor antrian

c. Stemming: At this point, the affixes are replaced with root words;

Tabel 6. Stemming

	e
Teks	Teks
Minta tolong dong di	minta tolong dong
perbaikistiap kali mau	perbaikistiap kali mau daftar
daftar kok di bilang koneksi	kok bilang koneksi buruk
buruk padahl signyal	padahl signyal lancarbutuh
lancarbutuh banget daftar	banget daftar online kek gin
online kek gini apalagi saya	apalagi punya babybutuh
punya baby,butuh banget	banget nomor antri
nomor antrian yg	cepatharus ningalin baby jam
cepat,harus ningalin baby	pagi rmh hanya ambil nomor
jam 6 pagi di rmh hanya	antri
ambil nomor antrian	

d. Tokenizing: At this stage, each word is separated according to the spaces found.

Tabel 7. Tokenizing

	8
Teks	Teks
Minta tolong dong di perbaikistiap kali mau	Minta tolong dong di perbaikistiap kali mau daftar
daftar kok di bilang koneksi	kok di bilang koneksi buruk
buruk padahl signyal	padahl signyal lancarbutuh
lancarbutuh banget daftar	banget daftar online kek gini
online kek gini apalagi saya	apalagi saya punya
punya baby,butuh banget	babybutuh banget nomor
nomor antrian yg	antrian yg cepatharus
cepat,harus ningalin baby	ningalin baby jam pagi di
jam 6 pagi di rmh hanya ambil nomor antrian	rmh hanya ambil nomor antrian

Transformation

In the transformation stage, data is converted into a form that can be processed.(Moh Khoirul Insan et al., 2023).

Data Separation

The data is divided into two parts: training data and test data. In this study, the amount of data separation was 8:2, which consisted of 20%

test data and 80% training data from 100 data that were successfully scrapped from Google Play.

Tabel 8. Data Separation

Review Data	Amount
Train Data	80
Test Data	20

Analysis and Evaluation

Evaluation and classification analysis using the Naive Bayes algorithm. In the process of sentiment analysis for the Police Hospital Patient Registration application, the Confusion matrix generated from the test data of 20 data is shown in Table 9.

Tabel 9. Confusion Matrix Result

		Predictive		
		Positive	Negative	Neutral
	Positive	25	2	0
Actual	Negative	63	1	0
	Neutral	9	0	0

As shown in the information in Table 9, out of 100 data predicted using the Naive Bayes Classifier algorithm, there were 25 predicted positive review data, 2 positive review data predicted as negative reviews, 1 negative review data predicted as positive reviews, and 63 correctly predicted negative review data. The results of calculating the classification evaluation based on the confusion matrix are shown below:

Negative:

Accuracy =
$$\frac{63+2}{(63+34+1+2)} = \frac{65}{(100)} = 0.65 \text{ x } 100\%$$

= 65%
Precision = $\frac{63}{63+34} = \frac{63}{97} = 0.649 \text{ x } 100\% = 64.9\%$
Recall = $\frac{63}{63+1} = \frac{63}{64} = 0.984 \text{ x } 100\% = 98.4\%$

Positive:

Accuracy =
$$\frac{2+72}{(2+1+72+25)} = \frac{74}{(100)} = 0.74 \text{ x } 100\%$$

= 74%

Precision =
$$\frac{2}{2+1} = \frac{2}{3} = 0.667 \times 100\% = 66.7\%$$

Recall =
$$\frac{TP}{TP+FN} = \frac{2}{2+25} = 0.074 \times 100\% = 7.4\%$$

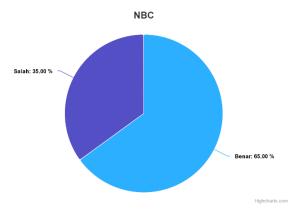


Fig. 4. Accuracy results using the Naïve Bayes Classifier Algorithm

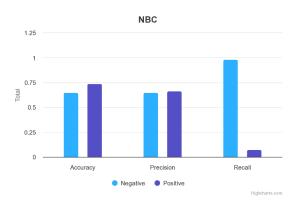


Fig. 5. Positive Accuracy Comparison Diagram and Negative Accuracy

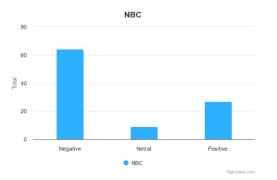


Fig. 6. Diagram of User Reviews of the Police **Hospital Registration Application**

Visualizes

The results of preprocessing data are used to describe words that are often used by users of the Polri Hospital Registration Application. This data visualization is carried out on all data both positive and negative and neutral. Data visualization is presented in wordcloud form.

Fig. 7. Word Cloud Sentiment Analysis User Reviews of the Police Hospital Registration Application

IV. CONCLUSION

This study found the Naive Bayes classification technique to analyze sentiment reviews of users of the Polri Hospital application, using data from Google Play scrapping which includes one hundred reviews. And divided by 80% for training data and 20% for testing data, it produces an accuracy value of 65% for negative sentiment reviews and 25% for positive sentiment reviews. With an execution time of 0.22803783416748 s, the Bayes classification algorithm can be used to get a better accuracy value.

The results of the sentiment analysis of the Polri Hospital Patient Registration Application can help application developers to improve the infrastructure and appearance of the application so that users are more comfortable using it. This is because this application is needed by patients at the Police Hospital

V. ACKNOWLEDGEMENT

Thanks to for Universitas Kristen Satya Wacana for supporting the research.

REFERENCES

- Apriani, R., Gustian, D., Program, S., Sistem, I., Putra, U. N., Indonesia, S., Raya, J., Kaler, C., 21, N., & Sukabumi, K. (2019). Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54-62. https://rekayasa.nusaputra.ac.id/article/vi ew/86
- Arsi, P., Kusuma, B. A., & Nurhakim, A. (2021). Analisis Sentimen Pindah Ibu Kota Berbasis Naive Bayes Classifier. Jurnal Informatika Upgris, 7(1), 1-6. https://doi.org/10.26877/jiu.v7i1.7636
- Daffa Rhajendra¹, M., & Trianasari, N. (2021). Analisis Sentimen Ulasan Aplikasi Spotify Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes Sentiment Analysis of Spotify Application Reviews for Service Improvement Using *Naive Bayes Algorithm.* 8(5), 4367–4376.
- Dales, J., Mirza, F., & Adel, A. (2021). Sentiment analysis on USA vs. New Zealand on health and safety mandates during early stages of COVID -19 pandemic. Studies in Health Technology and Informatics. 285. 67–75. https://doi.org/10.3233/SHTI210575
- Diekson, Z. A., Prakoso, M. R. B., Putra, M. S. Q., Syaputra, M. S. A. F., Achmad, S., & Sutoyo, R. (2023). Sentiment analysis for customer review: Case study Traveloka. Procedia Computer Science, 216(2022), 682–690. https://doi.org/10.1016/j.procs.2022.12.1
- Filemon, A., Kaban, H., & Yudistira, N. (2021). Analisis Sentimen Aplikasi E-Goverment berdasarkan Ulasan

- Pengguna menggunakan Metode Maximum Entropy dan Seleksi Fitur Mutual Information. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1452–1458.
- Gohil, S., Vuik, S., & Darzi, A. (2018). Sentiment analysis of health care tweets: Review of the methods used. JMIR Public Health and Surveillance, 4(4). https://doi.org/10.2196/publichealth.5789
- Hirata, E., & Matsuda, T. (2023). Examining logistics developments in post-pandemic Japan through sentiment analysis of Twitter data. Asian Transport Studies, 9(April 2023). 100110. https://doi.org/10.1016/j.eastsj.2023.1001
- J, S., & U, K. (2023). Sentiment analysis of amazon user reviews using a hybrid approach. Measurement: Sensors, 100790. 27(January), https://doi.org/10.1016/j.measen.2023.10 0790
- Kusumawati, N., Maspupah, U., Sari, D. R., Hamzah, A., Lukito, D., & Dwi Saputra, D. (2022). based on Surat Keputusan Dirjen Risbang SK Nomor 85/M/KPT/2020 **COMPARING** ALGORITHM **SENTIMENT** FOR ANALYSIS IN HEALTHCARE AND SOCIAL SECURITY AGENCY (BPJS KESEHATAN). Techno Nusa Mandiri: Journal of Computing and Information Technology As an Accredited Journal Rank. 19(1), 31–37. https://doi.org/10.33480/techno.v19i1.31
- Maria, R., Umayah, R. U., Mahardinny, S., Kalana, D. N., & Saputra, D. D. (2023). Analisis Sentimen Persepsi Masyarakat Terhadap Penggunaan Aplikasi My Pertamina Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes *Classifier*. 1, 1–10.
- Moh Khoirul Insan, Hayati, U., & Nurdiawan, O. (2023). Analisis sentimen aplikasi Brimo pada ulasan pengguna di foofle playstore mengunakan Algoritma Naive Bayes. 7(1), 478-483.

- Nugraha, F. A., Harani, N. H., Habibi, R., & Fatonah, R. N. S. (2020). Sentiment Analysis on Social Distancing and Physical Distancing on Twitter Social Media using Recurrent Neural Network (RNN) Algorithm. Jurnal Online Informatika, 5(2),195. https://doi.org/10.15575/join.v5i2.632
- Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng - Seri Informatika, 3(1), 50. https://doi.org/10.35314/isi.v3i1.335
- Shi, W., Liu, D., Yang, J., Zhang, J., Wen, S., & Su, J. (2020). Social bots' sentiment engagement in health emergencies: A topic-based analysis of the covid-19 pandemic discussions on twitter. International Journal of Environmental Research and Public Health, 17(22), 1https://doi.org/10.3390/ijerph17228701
- Tinaliah, T., & Elizabeth, T. (2022). Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector *JATISI* (Jurnal Machine. Teknik Informatika Dan Sistem Informasi), 9(4), 3436–3442.
 - https://doi.org/10.35957/jatisi.v9i4.3586
- Windarto, A. P. (2017). Implementation of Data Mining on Rice Imports by Major

- Country of Origin Using Algorithm Using K-Means Clustering Method. International Journal Artificial of Intelligence Research, 1(2),https://doi.org/10.29099/ijair.v1i2.17
- Yang, F. C., Lee, A. J. T., & Kuo, S. C. (2016). Mining Health Social Media with Sentiment Analysis. Journal of Medical *40*(11). https://doi.org/10.1007/s10916-016-0604-4
- Zhang, Y., Zhang, Y., Xu, J., Xing, C., & Chen, H. (2016). Sentiment Analysis on Chinese Helath Forums: A Preliminary Study of Different Language Model. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes Bioinformatics), 9545, https://doi.org/10.1007/978-3-319-29175-
- Zheng, K., Li, A., & Farzan, R. (2018). Exploration of online health support groups through the lens of sentiment analysis. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10766 LNCS. Springer International Publishing. https://doi.org/10.1007/978-3-319-78105-1_19